BCE Loss (PyTorch)

June 10, 2019, 9:10 p.m.

read: 6

适合最后一层(输出层)为二分类,
label==>1 为一个类别,label==> 0 为另一个类别
两个样例:

>>> target = torch.ones([10, 64], dtype=torch.float32)  # 64 classes, batch size = 10
>>> output = torch.full([10, 64], 0.999)  # A prediction (logit)
>>> pos_weight = torch.ones([64])  # All weights are equal to 1
>>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
>>> criterion(output, target)  # -log(sigmoid(0.999))
tensor(0.3135)
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(m(input), target)
>>> output.backward()

Android 动态权限

1. 添加权限到 AndroidManifest.xml2. 添加以下语句到build.gradle=>dependenciesimplementation 'com.mylhyl:acp...

计院之寒肩煞

文章标题:计院之寒肩煞文章内容:凸字房寒肩屋犯探头煞第三种是凸字房寒肩屋犯探头煞。这种房屋结构本身中间高、两边低的凸字房犯寒肩煞,也属于探头煞的一种。房顶包袱房犯探头煞第四种是房顶包袱房犯探头煞...

推荐使用 Firefox 访问此站点 | 本地DNS优化 | 友情链接: 张鹏的博客  Web布拉格  杨洋的博客   魏文成博客 | Developed by zhangpeng | Copyright © 2018-2019 hupeng.me