BCE Loss (PyTorch)

June 10, 2019, 9:10 p.m.

read: 1641

适合最后一层(输出层)为二分类,
label==>1 为一个类别,label==> 0 为另一个类别
两个样例:

>>> target = torch.ones([10, 64], dtype=torch.float32)  # 64 classes, batch size = 10
>>> output = torch.full([10, 64], 0.999)  # A prediction (logit)
>>> pos_weight = torch.ones([64])  # All weights are equal to 1
>>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
>>> criterion(output, target)  # -log(sigmoid(0.999))
tensor(0.3135)
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(m(input), target)
>>> output.backward()




Android 动态权限

1. 添加权限到 AndroidManifest.xml2. 添加以下语句到build.gradle=>dependenciesimplementation 'com.mylhyl:acp:1…

寒肩煞与路冲

文章标题:寒肩煞与路冲文章内容:计院之寒肩煞凸字房寒肩屋犯探头煞第三种是凸字房寒肩屋犯探头煞。这种房屋结构本身中间高、两边低的凸字房犯寒肩煞,也属于探头煞的一种。房顶包袱房犯探头煞第四种是房顶包袱房…

此站点由 ASP.NETIIS 驱动 | © 2018-2023 hupeng.me. All Rights Reserved.