Tensorflow tf.dynamic_partition 矩阵拆分(Py3)

March 17, 2018, 11:39 a.m.

read: 1106

Py3代码:

# one-hot 函数的样例
import tensorflow as tf

label = tf.placeholder(tf.int32,[None])
# 直接把 输入的序列进行One-Hot的结果
one_hot = tf.one_hot(label, 3, 1, 0)
# 进行转置
one_hot_new = tf.transpose(one_hot, perm=[1,0])
one_hot_new = tf.cast(one_hot_new, tf.float32)
# one_hot_new[2] = one_hot_new[2] * 1.5

# 按照每一维的大小进行拆分
one_hot_new_1 = tf.dynamic_partition(one_hot_new, [0, 1, 1], 2)[0]
one_hot_new_2 = tf.dynamic_partition(one_hot_new, [1, 0, 1], 2)[0]
one_hot_new_3 = tf.dynamic_partition(one_hot_new, [1, 1, 0], 2)[0]

# 按照每一维大小进行拆分
one_hot_1 = tf.dynamic_partition(one_hot_new, [0, 1, 2], 3)[0]
one_hot_2 = tf.dynamic_partition(one_hot_new, [0, 1, 2], 3)[1]
one_hot_3 = tf.dynamic_partition(one_hot_new, [0, 1, 2], 3)[2]

# one_hot_new_3 = tf.dynamic_partition(one_hot_new, [0, 0, 1], 2)[2]
# 拼接以上两维得到原来的结果
one_hot_new = tf.concat([one_hot_new_1, one_hot_new_2], axis=0)


if __name__ == '__main__':
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        one_hot_out, one_hot_new_out, one_hot_new_1_out, one_hot_new_2_out, one_hot_new_3_out, one_hot_1_out, one_hot_2_out, one_hot_3_out = sess.run([one_hot, one_hot_new, one_hot_new_1, one_hot_new_2, one_hot_new_3, one_hot_1, one_hot_2, one_hot_3], feed_dict={label: [0, 1, 1, 2, 2, 0, 0, 1, 2, 2, 0, 2]})
        print("原始的One-hot结果:")
        print(one_hot_out, end='\n\n')
        print("以上的结果.T:")

        print("方法一拆分:")
        print(one_hot_new_out, end='\n\n')
        print("拆分(1)维:")
        print(one_hot_new_1_out, end='\n\n')
        print("拆分 (2)维:")
        print(one_hot_new_2_out, end='\n\n')
        print("拆分 (3)维:")
        print(one_hot_new_3_out, end='\n\n')

        print("方法二拆分:")
        print("拆分(1)维:")
        print(one_hot_1_out, end='\n\n')
        print("拆分 (2)维:")
        print(one_hot_2_out, end='\n\n')
        print("拆分 (3)维:")
        print(one_hot_3_out, end='\n\n')



控制台输出:

原始的One-hot结果:
[[1 0 0]
[0 1 0]
[0 1 0]
[0 0 1]
[0 0 1]
[1 0 0]
[1 0 0]
[0 1 0]
[0 0 1]
[0 0 1]
[1 0 0]
[0 0 1]]

以上的结果.T:
方法一拆分:
[[ 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0.]
[ 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0.]]

拆分(1)维:
[[ 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0.]]

拆分 (2)维:
[[ 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0.]]

拆分 (3)维:
[[ 0. 0. 0. 1. 1. 0. 0. 0. 1. 1. 0. 1.]]

方法二拆分:
拆分(1)维:
[[ 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0.]]

拆分 (2)维:
[[ 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0.]]

拆分 (3)维:
[[ 0. 0. 0. 1. 1. 0. 0. 0. 1. 1. 0. 1.]]




Tensorflow 国内可访问地址

国内镜像地址:https://tensorflow.google.cn/ 官方地址(需要梯zi):https://www.tensorflow.org/

Tensorflow 读写 tfrecord 文件(Py3)

文章标题:Tensorflow 读写 tfrecord 文件(Py3)文章内容:写入tfrecord文件import tensorflow as tf file_path = '' list = […

此站点由 ASP.NETIIS 驱动 | © 2018-2023 hupeng.me. All Rights Reserved.